skip to main content


Search for: All records

Creators/Authors contains: "Bell-Dereske, Lukas"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Background

    Root and soil microbial communities constitute the below-ground plant microbiome, are drivers of nutrient cycling, and affect plant productivity. However, our understanding of their spatiotemporal patterns is confounded by exogenous factors that covary spatially, such as changes in host plant species, climate, and edaphic factors. These spatiotemporal patterns likely differ across microbiome domains (bacteria and fungi) and niches (root vs. soil).

    Results

    To capture spatial patterns at a regional scale, we sampled the below-ground microbiome of switchgrass monocultures of five sites spanning > 3 degrees of latitude within the Great Lakes region. To capture temporal patterns, we sampled the below-ground microbiome across the growing season within a single site. We compared the strength of spatiotemporal factors to nitrogen addition determining the major drivers in our perennial cropping system. All microbial communities were most strongly structured by sampling site, though collection date also had strong effects; in contrast, nitrogen addition had little to no effect on communities. Though all microbial communities were found to have significant spatiotemporal patterns, sampling site and collection date better explained bacterial than fungal community structure, which appeared more defined by stochastic processes. Root communities, especially bacterial, were more temporally structured than soil communities which were more spatially structured, both across and within sampling sites. Finally, we characterized a core set of taxa in the switchgrass microbiome that persists across space and time. These core taxa represented < 6% of total species richness but > 27% of relative abundance, with potential nitrogen fixing bacteria and fungal mutualists dominating the root community and saprotrophs dominating the soil community.

    Conclusions

    Our results highlight the dynamic variability of plant microbiome composition and assembly across space and time, even within a single variety of a plant species. Root and soil fungal community compositions appeared spatiotemporally paired, while root and soil bacterial communities showed a temporal lag in compositional similarity suggesting active recruitment of soil bacteria into the root niche throughout the growing season. A better understanding of the drivers of these differential responses to space and time may improve our ability to predict microbial community structure and function under novel conditions.

     
    more » « less
  2. null (Ed.)
  3. null (Ed.)
    Leaf fungal endophytes (LFEs) contribute to plant growth and responses to stress. Fungi colonize leaves through maternal transmission, e.g. via the seed, and through environmental transmission, e.g. via aerial dispersal. The relative importance of these two pathways in assembly and function of the LFE community is poorly understood. We used amplicon sequencing to track switchgrass ( Panicum virgatum ) LFEs in a greenhouse and field experiment as communities assembled from seed endophytes and rain fungi (integration of wet and dry aerial dispersal) in germinating seeds, seedlings, and adult plants. Rain fungi varied temporally and hosted a greater portion of switchgrass LFE richness (greater than 65%) than were found in seed endophytes (greater than 25%). Exposure of germinating seeds to rain inoculum increased dissimilarity between LFE communities and seed endophytes, increasing the abundance of rain-derived taxa, but did not change diversity. In the field, seedling LFE composition changed more over time, with a decline in seed-derived taxa and an increase in richness, in response to environmental transmission than LFEs of adult plants. We show that environmental transmission is an important driver of LFE assembly, and likely plant growth, but its influence depends on both the conditions at the time of colonization and plant life stage. 
    more » « less
  4. null (Ed.)
    Interactions between plants and microbes have important influences on evolutionary processes, population dynamics, community structure, and ecosystem function. We review the literature to document how climate change may disrupt these ecological interactions and develop a conceptual framework to integrate the pathways of plant-microbe responses to climate over different scales in space and time. We then create a blueprint to aid generalization that categorizes climate effects into changes in the context dependency of plant-microbe pairs, temporal mismatches and altered feedbacks over time, or spatial mismatches that accompany species range shifts. We pair a new graphical model of how plant-microbe interactions influence resistance to climate change with a statistical approach to predictthe consequences of increasing variability in climate. Finally, we suggest pathways through which plant-microbe interactions can affect resilience during recovery from climate disruption. Throughout, we take a forward-looking perspective, highlighting knowledge gaps and directions for future research. 
    more » « less
  5. The mandate by the Energy Independence and Security Act of 2007 to increase renewable fuel production in the USA has resulted in extensive research into the sustainability of perennial bioenergy crops such as switchgrass (Panicum virgatum) and miscanthus (Miscanthus× giganteus). Perennial grassland crops have been shown to support greater aboveground biodiversity and ecosystem function than annual crops. However, management considerations, such as what crop to plant or whether to use fertilizer, may alter belowground diversity and ecosystem functioning associated with these grasslands as well. In this study, we compared crop type (switchgrass or miscanthus) and nitrogen fertilization effects on arbuscular mycorrhizal fungal (AMF) and soil nematode abundance, activity, and diversity in a long-term experiment. We quantified AMF root colonization, AMF extra-radical hyphal length, soil glomalin concentrations, AMF richness and diversity, plant-parasitic nematode abundance, and nematode family richness and diversity in each treatment. Mycorrhizal activity and diversity were higher with switchgrass than with miscanthus, leading to higher potential soil carbon contributions via increased hyphal growth and glomalin production. Plant-parasitic nematode (PPN) abundance was 2.3 ×  higher in miscanthus plots compared to switchgrass, mostly due to increases in dagger nematodes (Xiphinema). The higher PPN abundance in miscanthus may be a consequence of lower AMF in this species, as AMF can provide protection against PPN through a variety of mechanisms. Nitrogen fertilization had minor negative effects on AMF and nematode diversity associated with these crops. Overall, we found that crop type and fertilizer application associated with perennial bioenergy cropping systems can have detectable effects on the diversity and composition of soil communities, which may have important consequences for the ecosystem services provided by these systems. 
    more » « less
  6. Premise

    Microbial symbionts can buffer plant hosts from environmental change. Therefore, understanding how global change factors alter the associations between hosts and their microbial symbionts may improve predictions of future changes in host population dynamics and microbial diversity. Here, we investigated how one global change factor, precipitation, affected the maintenance or loss of symbiotic fungal endophytes in a C3grass host. Specifically, we examined the distinct responses ofEpichloë(vertically transmitted and systemic) and non‐epichloid endophytes (typically horizontally transmitted and localized) by considering (1) how precipitation altered associations withEpichloëand non‐epichloid endophytic taxa across host ontogeny, and (2) interactive effects of water availability andEpichloëon early seedling life history stages.

    Methods

    We manipulated the presence ofEpichloë amarillansin American beachgrass (Ammophila breviligulata) in a multiyear field experiment that imposed three precipitation regimes (ambient or ±30% rainfall). In laboratory assays, we investigated the interactive effects of water availability andEpichloëon seed viability and germination.

    Results

    Reduced precipitation decreased the incidence ofEpichloëin leaves in the final sampling period, but had no effect on associations with non‐epichloid taxa.Epichloëreduced the incidence of non‐epichloid endophytes, including systemic p‐endophytes, in seeds. Laboratory assays suggested that association withEpichloëis likely maintained, in part, due to increased seed viability and germination regardless of water availability.

    Conclusions

    Our study empirically demonstrates several pathways for plant symbionts to be lost or maintained across host ontogeny and suggests that reductions in precipitation can drive the loss of a plant's microbial symbionts.

     
    more » « less